Aller au contenu principal

2 articles tagués avec « cwcloud »

Voir tous les tags

Replace Google Analytics with Grafana, Quickwit and CWCloud

· 6 minutes de lecture
Idriss Neumann
CEO comwork.io

Hi and Merry Christmas 🎄 (again yes, I didn't thought that I was going to publish another blogpost so soon 😄).

In this blogpost we'll see how to use CWCloud and Quickwit to setup beautiful dashboards like this in replacement of Google Analytics:

grafana-geomap-dashboard

Before going in details, let's start to give you a bit of context of what brought us to do this transition.

First, Google Analytics ain't comply with the GDPR1. So basically it was becoming illegal to continue to use it despite it was an amazing tool to analyze our websites and application usages.

With the last case law, we started to use Matomo as a replacement and we're still providing Matomo as a Service in our CWCloud SaaS. And it worked pretty well (even if I find the UI a bit old-fashion)...

However I didn't like to maintain multiple stacks which, from my perspective, are serving the same purpose: observability. And yes web analytics should be part of it from my perspective.

I already explained why we choosed Quickwit as our observability core stack in previous blogposts:

So the idea was to use the same observability stack to track visitors data and index and display those on Grafana. And to be able to achieve this, we needed something very easy to add in our various frontend like a one-pixel image:

<img src="https://cloud-api.comwork.io/v1/tracker/img/{mywebsite}" style="display: none;"></img>

As you can see, we provided it as an endpoint in CWCloud to complete the observability features and it's documented here.

This endpoint is writing a log which looks like this:

INFO:root:{"status": "ok", "type": "tracker", "time": "2024-12-20T13:46:23.358233", "host": "82.65.240.115", "user_agent": "Mozilla/5.0 (iPhone; CPU iPhone OS 18_1_1 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/18.1.1 Mobile/15E148 Safari/604.1", "referrer": "https://cloud.comwork.io/", "website": "cloud.comwork.io", "device": "mobile", "browser": "safari", "os": "ios", "details": {"brand": "apple", "type": "iphone"}, "infos": {"status": "ok", "status_code": 200, "city": "Saint-Quentin", "region": "Hauts-de-France", "country": "France", "region_code": "HDF", "country_iso": "FR", "lookup": "FRA", "timezone": "Europe/Paris", "utc_offset": "FR", "currency": "EUR", "asn": "AS12322", "org": "Free SAS", "ip": "xx.xx.xx.xx", "network": "xx.xx.xx.0/24", "version": "IPv4", "hostname": "xx-xx-xx-xx.subs.proxad.net", "loc": "48.8534,2.3488"}, "level": "INFO", "cid": "742b7629-7a26-4bc6-bd2a-3e41bee32517"}

So at the end, it contain a JSON payload we can extract and index:

{
"status": "ok",
"type": "tracker",
"time": "2024-12-20T13:46:23.358233",
"host": "82.65.240.115",
"user_agent": "Mozilla/5.0 (iPhone; CPU iPhone OS 18_1_1 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/18.1.1 Mobile/15E148 Safari/604.1",
"referrer": "https://cloud.comwork.io/",
"website": "cloud.comwork.io",
"device": "mobile",
"browser": "safari",
"os": "ios",
"details": {
"brand": "apple",
"type": "iphone"
},
"infos": {
"status": "ok",
"status_code": 200,
"city": "Saint-Quentin",
"region": "Hauts-de-France",
"country": "France",
"region_code": "HDF",
"country_iso": "FR",
"lookup": "FRA",
"timezone": "Europe/Paris",
"utc_offset": "FR",
"currency": "EUR",
"asn": "AS12322",
"org": "Free SAS",
"ip": "xx.xx.xx.xx",
"network": "xx.xx.xx.0/24",
"version": "IPv4",
"hostname": "xx-xx-xx-xx.subs.proxad.net",
"loc": "48.8534,2.3488"
},
"level": "INFO",
"cid": "742b7629-7a26-4bc6-bd2a-3e41bee32517"
}

So let's start by creating the Quickwit mapping:

{
"doc_mapping": {
"mode": "lenient",
"field_mappings": [
{
"name": "time",
"type": "datetime",
"fast": true,
"fast_precision": "seconds",
"indexed": true,
"input_formats": [
"rfc3339",
"unix_timestamp"
],
"output_format": "unix_timestamp_nanos",
"stored": true
},
{
"indexed": true,
"fast": true,
"name": "cid",
"type": "text",
"tokenizer": "raw"
},
{
"indexed": true,
"fast": true,
"name": "website",
"type": "text",
"tokenizer": "raw"
},
{
"indexed": true,
"fast": true,
"name": "device",
"type": "text",
"tokenizer": "raw"
},
{
"indexed": true,
"fast": true,
"name": "os",
"type": "text",
"tokenizer": "raw"
},
{
"indexed": true,
"fast": true,
"name": "browser",
"type": "text",
"tokenizer": "raw"
},
{
"indexed": true,
"fast": true,
"name": "host",
"type": "ip"
},
{
"indexed": true,
"fast": true,
"name": "hostname",
"type": "text",
"tokenizer": "raw"
},
{
"indexed": true,
"fast": true,
"name": "user_agent",
"type": "text",
"tokenizer": "raw"
},
{
"indexed": true,
"fast": true,
"name": "referrer",
"type": "text",
"tokenizer": "raw"
},
{
"indexed": true,
"fast": true,
"name": "lookup",
"type": "text",
"tokenizer": "raw"
},
{
"name": "details",
"type": "object",
"field_mappings": [
{
"indexed": true,
"fast": true,
"name": "brand",
"type": "text",
"tokenizer": "raw"
},
{
"indexed": true,
"fast": true,
"name": "type",
"type": "text",
"tokenizer": "raw"
}
]
},
{
"name": "infos",
"type": "object",
"field_mappings": [
{
"indexed": true,
"fast": true,
"name": "status",
"type": "text",
"tokenizer": "raw"
},
{
"name": "status_code",
"fast": true,
"indexed": true,
"type": "u64"
},
{
"indexed": true,
"fast": true,
"name": "city",
"type": "text",
"tokenizer": "raw"
},
{
"indexed": true,
"fast": true,
"name": "region",
"type": "text",
"tokenizer": "raw"
},
{
"indexed": true,
"fast": true,
"name": "country",
"type": "text",
"tokenizer": "raw"
},
{
"indexed": true,
"fast": true,
"name": "region_code",
"type": "text",
"tokenizer": "raw"
},
{
"indexed": true,
"fast": true,
"name": "country_iso",
"type": "text",
"tokenizer": "raw"
},
{
"indexed": true,
"fast": true,
"name": "timezone",
"type": "text",
"tokenizer": "raw"
},
{
"indexed": true,
"fast": true,
"name": "utc_offset",
"type": "text",
"tokenizer": "raw"
},
{
"indexed": true,
"fast": true,
"name": "currency",
"type": "text",
"tokenizer": "raw"
},
{
"indexed": true,
"fast": true,
"name": "asn",
"type": "text",
"tokenizer": "raw"
},
{
"indexed": true,
"fast": true,
"name": "network",
"type": "text",
"tokenizer": "raw"
},
{
"indexed": true,
"fast": true,
"name": "ip",
"type": "ip"
},
{
"indexed": true,
"fast": true,
"name": "org",
"type": "text",
"tokenizer": "raw"
},
{
"indexed": true,
"fast": true,
"name": "version",
"type": "text",
"tokenizer": "raw"
},
{
"indexed": true,
"fast": true,
"name": "loc",
"type": "text",
"tokenizer": "raw"
}
]
}
],
"timestamp_field": "time",
"max_num_partitions": 200,
"index_field_presence": true,
"store_source": false,
"tokenizers": []
},
"index_id": "analytics-v0.4",
"search_settings": {
"default_search_fields": [
"website",
"cid",
"host",
"referrer",
"infos.ip",
"infos.country",
"infos.country_iso",
"infos.city",
"infos.region_code",
"infos.timezone",
"infos.currency",
"infos.version"
]
},
"version": "0.8"
}

Note: as you can see, we moved the lookup field to the root document in order to be able to use the Geomap plugin of Grafana.

Once it's done, we can use Vector, as usual, to parse this log line with the following remap function:

remap_analytics:
inputs:
- "kubernetes_logs"
type: "remap"
source: |
.time, _ = to_unix_timestamp(.timestamp, unit: "nanoseconds")

.message = string!(.message)
.message = replace(.message, r'^[^:]*:[^:]*:', "")

.body, err = parse_json(.message)
if err != null || is_null(.body) || is_null(.body.cid) || is_null(.body.type) || .body.type != "tracker" {
abort
}

.cid = .body.cid
.website = .body.website
.browser = .body.browser
.device = .body.device
.os = .body.os
.host = .body.host
.referrer = .body.referrer
.user_agent = .body.user_agent
.infos = .body.infos
.details = .body.details

if is_string(.infos.lookup) {
.lookup = del(.infos.lookup)
}

del(.timestamp)
del(.body)
del(.message)
del(.source_type)

And then the sink2:

sinks:
analytics:
type: "http"
method: "post"
inputs: ["remap_analytics"]
encoding:
codec: "json"
framing:
method: "newline_delimited"
uri: "https://xxxx:yyyyy@quickwit.yourinstance.com:443/api/v1/analytics-v0.4/ingest"

Once it's done you'll be able to do some visualization in Grafana using the Geomap plugin:

grafana-geomap

Very nice, isn't it?

Have a nice end of year and Merry Christmas 🎄 again!

Footnotes

  1. General Data Protection Regulation, a European law you can find here

  2. A sink is an output of vector which is working like an ETL (for Extract Transform Load)

Installing CWCloud on K8S is so easy!

· 3 minutes de lecture
Idriss Neumann
CEO comwork.io

Hi and Merry Christmas 🎄.

With all the demos we've done lately, some people asks us a way to install CWCloud easily on localhost to give it a try, especially for the serverless part.

Let's start with a quick reminder on what is CWCloud: it's an agnostic deployment accelerator platform which provides the following features:

  • DaaS or Deployment as a Service: you can checkout this tutorial to understand how DaaS is working with cwcloud and what's the difference between IaaS, PaaS and DaaS.
  • FaaS or Function as a Service: you can checkout this blogpost to understand what is the purpose of this feature
  • Observability and monitoring: you can checkout this tutorial

At the time of writing, here's the different component used by CWCloud to run:

  • A RESTful API
  • A Web GUI1
  • Some asynchronous workers to schedule run the serverless function
  • ObjectStorage
  • PostgreSQL as relational and JSON database
  • Redis for the cache and message queuing
  • Flyway DB SQL migrations

It can be seen as a bit heavy but believe me it's not, it can run on a single Raspberry PI!

In order to self-host CWCloud, we provide three ways (the three are relying on docker images):

But this is not enough to bootstap it in seconds. In this blogpost we will show you how to run CWCloud with our CLI cwc using kind2 in order to use some feature which doesn't not depends on the external services like the FaaS or the monitor features.

Just a bit of reminder, here's how to install kind, kubect and helm with brew:

brew install kubectl
brew install helm
brew install kind

Then you can also install our cwc cli using brew3:

brew tap cwc/cwc https://gitlab.comwork.io/oss/cwc/homebrew-cwc.git 
brew install cwc

Once it's done, you can create your cluster with kind:

kind create cluster

And then, simply run the following command:

cwc bootstrap

Then, wait until the pods are Running:

kubectl -n cwcloud get pods

cwcloud-pods

Then you can open port-forward to the API and GUI in order to be able to open the GUI in a web browser:

cwc bootstrap pfw

You'll be able to access the GUI through this URL: localhost:3000

cwcloud-k8s-bootstrap

The default user and password are the following:

  • Username: sre-devops@comwork.io
  • Password: cloud456

Of course if you need to override some helm configurations, you can with this command:

cwc bootstrap --values my-values.yaml

It's might be necessary if you want to configure the DaaS feature which is in a "no operation" mode by default. In order to fully use it, you'll have to follow all those configurations tutorials depending on the cloud provider you want to enable.

And finally if you want to uninstall, here's the command:

cwc bootstrap uninstall

Now I'll let you with this five minutes video tutorial on how to use the FaaS, you can fully reproduce on your local environment:

faas-tutorial-player

Enjoy!

Footnotes

  1. Graphical User Interface

  2. Of course you can replace kind, by something equivalent like k3d or minikube as you wish.

  3. We also provide other way to install our cli if you don't have brew available on your operating system, you can refer to this tutorial. We're supporting Linux, MacOS and Windows for both amd64 and arm64 architectures.